Changes in viscoelastic vibrational properties between compression and normal wood : roles of microfibril angle and of lignin

نویسندگان

  • Iris Brémaud
  • Julien Ruelle
  • Anne Thibaut
  • Bernard Thibaut
چکیده

This study aims at better understanding the respective influences of specific gravity ( ), microfibril angle (MFA), and cell-wall matrix polymers on viscoelastic vibrational properties of wood in axial direction. The wide variations of properties between normal wood (NW) and compression wood (CW) are in focus. Three young bent trees (Picea abies, Pinus sylvestris and Pinus pinaster) that recovered verticality were sampled. Several observed differences between NW and CW were highly significant in terms of anatomical, physical ( , shrinkage, CIELab colorimetry), mechanical (compressive strength), and vibrational properties. Specific dynamic modulus of elasticity (E’/ ) decreases with increasing MFA, and Young’s modulus (E’) can be satisfactorily explained by and MFA. Apparently, the type of the cell wall polymer matrix is not influential in this regard. The damping coefficient (tan ) does not depend solely on MFA of NW and CW. The tan – E’/ relationship evidences that, at equivalent E’/ , the tan of CW is approx. 34% lower than that of NW. This observation is ascribed to the more condensed nature of CW lignins, and this is discussed in the context of previous findings in other hygrothermal and time/frequency domains. It is proposed that the lignin structure and the amount and type of extractives, which are both different in various species, are partly responsible for taxonomy-related damping characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.

The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan ...

متن کامل

Acetylation of wood – A review

Wood is a porous three dimensional, hydroscopic, viscoelastic, anisotropic bio-polymer composite composed of an interconnecting matrix of cellulose, hemicelluloses and lignin with minor amounts of inorganic elements and organic extractives. Some, but not all, of the cell wall polymer hydroxyl groups are accessible to moisture and these accessible hydroxyls form hydrogen bonds with water. As the...

متن کامل

A Comparative Analysis on the Longitudinal Compression Characteristics of Juvenile and Mature Northeast Chinese Ash (Fraxinus mandshurica Rupr.) Subjected to Alkaline Treatment

Longitudinal compression can help wood form some folds on the wood cell walls after a suitable softening procedure. These folds can enhance the oneand multi-dimensional bending performances of wood. The longitudinal compression properties of alkali-treated juvenile and mature northeast Chinese ash (Fraxinus mandshurica Rupr.) were analyzed. Elastic and elastic-plastic stages were inferred from ...

متن کامل

Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths, microfibril angle, density, and radial p...

متن کامل

Mechanical properties of spruce wood cell walls by nanoindentation

In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017